Integrating Computational Biology and Forward Genetics in Drosophila

نویسندگان

  • Stein Aerts
  • Sven Vilain
  • Shu Hu
  • Leon-Charles Tranchevent
  • Roland Barriot
  • Jiekun Yan
  • Yves Moreau
  • Bassem A. Hassan
  • Xiao-Jiang Quan
چکیده

Genetic screens are powerful methods for the discovery of gene-phenotype associations. However, a systems biology approach to genetics must leverage the massive amount of "omics" data to enhance the power and speed of functional gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and RNAi collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for functional prioritization in Drosophila, called Endeavour-HighFly, and the Atonal network, are publicly available resources. A systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly enhances the process of gene function and gene-gene association discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sPEGG: high throughput eco-evolutionary simulations on commodity graphics processors

Integrating population genetics into community ecology theory is a major goal in ecology and evolution, but analyzing the resulting models is computationally daunting. Here we describe sPEGG (simulating Phenotypic Evolution on General Purpose Graphics Processing Units (GPGPUs)), an open-source, multi-species forward-time population genetics simulator. Using a single commodity GPGPU instead of a...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Saffron’omics’: The challenges of integrating omic technologies

Saffron is one of the highly exotic spices known for traditional values and antiquity. It is used for home décor besides serving as a colorant flavor and is widely known for medicinal value. Over the last few years, saffron has garnered a lot of interest due to its anti-cancer, anti-mutagenic, anti-oxidant and immunomodulatory properties. Integration of systems biology approaches with wide appl...

متن کامل

BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development.

Embryonic gene expression patterns are an indispensable part of modern developmental biology. Currently, investigators must visually inspect numerous images containing embryonic expression patterns to identify spatially similar patterns for inferring potential genetic interactions. The lack of a computational approach to identify pattern similarities is an impediment to advancement in developme...

متن کامل

Dr. Tian Xu

Tian Xu is professor and vice chairman of Genetics at Yale University and a Howard Hughes Medical Institute investigator. His lab is working to understand the mechanisms of tumorigenesis and metastasis using Drosophila and mouse models. Notably, Dr. Xu has developed the powerful piggyBac transposon mutagenesis system, which has allowed investigators to perform forward genetics in mammalian mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Genetics

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009